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A method to calculate the thermal diffusivity D from spontaneous fluctuations in the local heat ener-
gy density is presented. Calculations of the thermal diffusivity are performed for the Lennard-Jones
fluid, carbon dioxide, and water. The results for the Lennard-Jones fluid are in agreement with calcula-
tions of the thermal conductivity using Green-Kubo relations and nonequilibrium molecular-dynamics
techniques. The results for carbon dioxide and water give thermal diffusivities within a factor of 2 of the

experimental values.

PACS number(s): 05.60.+w, 02.70.Ns, 66.60.+a

I. INTRODUCTION

This paper will explore the calculation of the thermal
diffusivity from molecular-dynamics simulations based on
the decay of spontaneous fluctuations in the heat energy
density. This is similar to an approach for calculating the
shear viscosity based on the decay of spontaneous fluc-
tuations in the transverse velocity fields [1-3]. Previous
studies of heat transfer in molecular simulations have fo-
cused on the thermal conductivity « which is closely re-
lated to the thermal diffusivity Dy via the equation [4]

Dr=pc,k , (1.1)
where p is the density and c, is the constant-pressure
specific heat. Most calculations of the thermal conduc-
tivity have used either nonequilibrium molecular-
dynamics (NEMD) techniques [5-7] or the appropriate
Green-Kubo relations [8-10]. For the NEMD calcula-
tion, the response of the system to a small disturbance is
calculated and compared to the same system in the ab-
sence of the disturbance. The Green-Kubo relation re-
quires the evaluation of a time correlation function
formed from components of the energy current. The
thermal conductivity can then be calculated by integrat-
ing over the time correlation function.

Both the NEMD techniques and the Green-Kubo rela-
tion appear to work well. The thermal conductivity can
be calculated with small uncertainties (typically less than
5%) with reasonable effort, and both methods agree with
each other in cases where they can be compared directly
[5-8]. However, the use of NEMD techniques limits the
amount of additional information that can be gained
from the simulation, and the calculation of the Green-
Kubo integrand during an equilibrium simulation adds
substantially to the force loop calculation [11].

An alternative to these methods is to monitor the de-
cay of spontaneous fluctuations in the heat energy densi-
ty. This is analogous to an approach for calculating the
shear viscosity by examining the long-time behavior of
the transverse current autocorrelation function (TCAF)
[1-3]. Correlation functions can be formed from plane-
wave expansions of the local heat energy density. Those
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correlation functions that are formed from the long-
wavelength components of the expansion decay exponen-
tially at long times, with a decay constant that is propor-
tional to the thermal-diffusion coefficient. For large sys-
tems, the correlation functions can be calculated easily
during the simulation and the thermal diffusivity can be
recovered from the long-time behavior. This procedure is
easily implemented and does not add significantly to the
computational requirements for the simulation. It gives
results that are in agreement with other methods, al-
though the overall statistics do not appear quite as good.

II. BACKGROUND

A brief derivation of the equations governing thermal
diffusion is given in this section. This derivation is in-
tended to give a qualitative sketch of the relation between
the microscopic behavior of the liquid and the macro-
scopic thermal-diffusion coefficient. More rigorous
derivations based on linear-response theory can be found
in the literature [12-14].

The treatment of thermal diffusion in a liquid begins
with the conservation law

gt—e(r,t)+v-jf(r,z)=o , 2.1)
where €(r,?) is the spatially dependent energy density and
jé(r,2) is the corresponding energy current. For a system
moving with constant uniform velocity v, the energy
current j€ has the form

j*=(e+p)v. (2.2)

The hydrostatic pressure p appearing in Eq. (2.2) ac-
counts for the pdV work that is done when the flow is no
longer uniform.

For a nonuniform system with temperature gradients,
the energy current is modified to

j(r,t)=(e+p)v(r,t)—«VT(r,t), 2.3)

where T'(r,t) is the local temperature and « is the
thermal conductivity. The final term accounts for the en-
ergy currents that appear when a thermal gradient exists.
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All spatially dependent quantities are assumed to be
small. Inserting this expression for j¢ into the conserva-
tion law (2.1) gives

%e(r,t)+(e+p)V-v(r,t)—KV2T(r,t)=O )

The V-v(r,t) term in Eq. (2.4) can be eliminated using the
mass conservation equation

(2.4)

% 1 y.(pv)=0
ot (pv)=0,
where p(r,?) is the local mass density. Substituting Eq.
(2.5) in Eq. (2.4) and retaining only the terms that are
linear in small quantities gives [12]

(2.5)

—kV2T (r,t)=0 .

EY (2.6)

e(r,t)—%gp(r,t)

The quantity in brackets is referred to as the heat energy
density

q(r,t)ze(r,t)—%ﬂp(r,t) . 2.7
To solve Eq. (2.6), the Fourier and Laplace transform
of g (r,t) is defined as

a(k,2)= [drie® [ “dreq(r,) 2.8)

A similar expression exists for T(r,t). The Fourier-
Laplace transform of Eq. (2.6) is the algebraic equation

—iz q(k,2)+kk?T (k,z)=q (k) , (2.9)

where g (k) is the Fourier transform of g (r,t =0).
The next step is to rewrite T'(k,z) in terms of g (k,z).
This can be done by using the thermodynamic identity

TdS =dE +pdV , (2.10)

where E and S are the energy and entropy of the system,
respectively. If the total number of molecules in the sys-
tem is fixed, implying that the total mass is fixed, then
fluctuations in p and ¥V are related via

_ 4V _dp 2.11)
Vop
This leads to
dE=d(eV)=Vde+edV
€
=V|de——dp| .
p
Thus, for a constant number of molecules,
%dS=de—i}de. (2.12)

From Eq. (2.12), g can be interpreted as a local entropy
density and fluctuations in g under constant-pressure con-
ditions can be equated with fluctuations in the local
enthalpy. Instead of using g and T as variables, it is more
convenient to use g and p. Expanding 7 (k,z) in terms of
q (k,z) and p (k,z) gives
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T(k,z):ﬂ

(kz)+ X 3T
ap

& T as
Equation (2.13) follows directly from Eq. (2.12). The
derivative of temperature with respect to entropy is relat-
ed to the constant-pressure specific heat via

q(k,z) .
p

(2.13)

_T3as
PS= aT L (2.14)
Equation (2.9) can then be written as
—izq (k,z)+pc,kkq (k,z)=gq (k) —kk 5 p(k,z),
s
(2.15)
which can be solved for g (k,z) to give [15]
g(k,z)=—————g (k)
" —iz+Drk?
2
—*_k—zKa—T p(k,Z) . (2.16)
—iz+Dgk* 0p |

At long wavelengths (small k), the second term in Eq.
(2.16) can be ignored. The correlation function for spon-
taneous fluctuations in g should then have the form

1

e .

(g(k,z)g(k))= ((g(k))?) .

The brackets represent an equilibrium average over ini-
tial conditions. This equation applies only in the hydro-
dynamic limit of small k and long times. The real-time
equivalent of Eq. (2.17) is

Cook,0)=(q(k,1)g (k))

12
~e CPT (2.18)

Equation (2.18) provides a direct method for calculat-
ing the thermal-diffusion coefficient from molecular-
dynamics simulations. The fields g (k,t) are calculated
during the simulation and used to form the autocorrela-
tion function qu(k,t). The thermal-diffusion coefficient
can then be extracted from the decay constant for
C,,(k,1) at long times, provided that k is small enough so
that the hydrodynamic form represented by Eq. (2.18) ap-
plies.

The microscopic expressions for the fields g (k,¢) can
be obtained using standard techniques. The microscopic
energy density e(r,?) and the particle density p(r,¢) for a
system containing N particles can be written as

N
e(r,t)= 3 €;(0)d(r—r;(1)), (2.19)

j=1

N

plr,0)=3 8(r—r;(1)), (2.20)
j=1

where r;(#) is the location of particle j at time ¢. For a

monotomic fluid with pairwise additive interactions, the

single-particle energy ¢; is given by
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€= pjz
7 2m

1 N
. +E > bulry) s (2.21)
J =1
where ¢;,(r;) is the interaction between particles j and /,
and m g and p ; are the mass and momentum, respectively,
of particle j. For a periodic system of volume L3, the &

functions in Egs. (2.19) and (2.20) can be expanded as

ik-(r—-r].(t))

d(r—r;(1)=3 <

e 2.22
T (nL) 222

The sum is over all k of the form
27
k=T(n],n2,n3) N

where n,n,,n; are integers. This paper will follow the
crystallographic convention of labeling all equivalent k
vectors by (|n,1,|n,|,|n;|). Substituting the expansion of
the delta function (2.22) into Eq. (2.19) gives the expres-
sion

eik-r

(2mL)®

—ik-rj(t)

N
E ej(t)e

j=1

e(r,t)=3
k

(2.23)

The Fourier amplitudes for energy fluctuations are then

N —iker,
k)= e <

j=1

(2.24)

Similarly, the Fourier amplitudes for density fluctuations
are

—ik-rj(t)

N
pk,)=73 e (2.25)

i=1

From Eq. (2.7) the correlation function C,,(k,?) can be
written as

cqq<k,t)=<e(k,t)e(k)>—%”—(ak,t)p(k))

— £ ok, ne(k))
P
+ 2
- 5;1’- (pk,0p(K)) . (2.26)

Equation (2.26) is the most convenient form for calculat-
ing C,,(k,?) from simulations. The energy density € and
the pressure p are average quantities that are known only
at the end of the simulation. The four correlation func-
tions (e(k,t)e(k)), etc., can be calculated during the
course of the simulation, and qu(k,t) is constructed at
the end, using Eq. (2.26) when accurate values of € and p
are available.

Instead of defining the Fourier amplitudes by Egs.
(2.24) and (2.25), equivalent expressions can be defined
with sine and cosine functions. The amplitudes for e(k,?)
now have the form

N
ek,n)=3 €(0sin(kr;(1) ,
j=1

or
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N
ek,1)= 3 €;(t)cos(k-r;(1)) .
j=1

Similar expressions exist for p(k,¢). If the sine and cosine
expansions are used, then the correlation functions for k
and —k are the same, so the total number of correlation
functions associated with all k vectors of equal magni-
tude remains the same, whether Eqgs. (2.24) and (2.25) or
the sine and cosine expansions are used.

For an infinite system, the translational and rotational
symmetry of an isotropic liquid means that the C,,(k,?)
depend only on the magnitude of k. For finite systems
with periodic boundary conditions, this is no longer
necessarily true. Only those C,,(k,?) calculated from k’s
that are related by symmetries of the periodic lattice
must be equivalent. For example, the C,,(k,?) calculated
from the k vectors labeled by the indices (2,2,1) and
(3,0,0) could differ. For this case there are two sets of in-
dices, corresponding to vectors of the same length that
are not related by symmetry operations of the periodic
lattice. Furthermore, C,,(k,?) calculated for the same k
vector could differ if calculated from simulations of
different system sizes. For the liquids investigated in this
paper, the dependence of the C,,(k,?) on the system size
appears negligible.

The Fourier transform of qu(k, t) is also of interest be-
cause of its relation to the Green-Kubo formula for the
thermal conductivity. The correlation function C,,(k,?)
can be considered symmetric in time about the origin
t =0, and its Fourier transform is defined as

Coky)= [ * e™Cy(k,0)dt .

From linear-response theory, the wave-vector- and
frequency-dependent susceptibility for disturbances in the
field ¢ (k,¢) at small k and w is [12-14]

pc, TDrk*o

m . (2.27)

XgqKs0)=
The susceptibility x,(k,®) can be related to the

C,(k,®) using the fluctuation-dissipation theorem to get
(13]

Xoq(ks@) =0k TC,y (K, 1) . (2.28)

The Green-Kubo relation follows from taking the limit

1 .. . o
= I fim k(o)

2
=k lim lim %qu(k,w) . (2.29)

w—0
The Green-Kubo integral is obtained by converting Eq.
(2.29) into its corresponding real-space real-time expres-
sion. The small-k, small-w expression for qu(k,a)) fol-

lows directly from Eqs. (2.27) and (2.28):
c,Drk?/k
Collo@)="2 020
o°+(Drk?)

This is simply the Fourier transform of Eq. (2.18), so the
exponential decay of C,,(k,?) at small k and long times
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implies the validity of the Green-Kubo relation. If
C,,(k, 1) does not exhibit such behavior for the smallest k
accessible in the simulation, this may point to finite-size
contributions to the Green-Kubo value of «.

III. MEMORY FUNCTIONS

To actually obtain the thermal diffusivity, the C,, (k,?)
obtained from the simulations are fit to an analytic form
and the thermal diffusivity is extracted from the parame-
ters in the fit. The simplest approach is to fit the C,, (k,?)
to an exponential decay and calculate D} from the decay
constant. However, it is also possible to generalize the
equation for C,(k,?) to account for nonhydrodynamic
effects that occur at short times and small length scales
(large k).

Equation (2.17) implies that C,(k,?) satisfies a real-
time equation of the form

9 - 2
Equ(k,t)——DTk Cpk,t) . (3.1
The solution of this equation is the exponential decay in
Eq. (2.18). Some of the nonhydrodynamic behavior at
short times can be accounted for by generalizing Eq. (3.1)
to

a ®© ’ ’ ’
B?qu(k,t)z—DTkZIO ¢t —t')Cp, (k,t")dt" ,
where the memory function ¢(¢) satisfies the normaliza-
tion condition

J etode=1.

(3.2)

For ¢(¢)=8(t), Eq. (3.2) reduces to Eq. (3.1). A common
choice for ¢(t) is a simple exponential relaxation [13],

S)=Le17 (3.3)
T
where 7 is a microscopic relaxation time. The memory
function accounts for the lag between the time a gradient
appears in the density q(r) and the appearance of the
corresponding current j,.
For water, a damped oscillation of the form

_ 170 L,
T

cos(Q7) (3.4)

o(t)
was used to fit the correlation functions. This accounted
for some small amplitude oscillatory behavior observed in
the correlation functions. All calculations using nontrivi-
al memory functions were compared to curve fits to the
simple exponential form

2

Cplk,t)=de 1", (3.5)
where 4 and D are adjustable parameters. The value of
D calculated using the simple exponential form was gen-
erally comparable to the value obtained using the
memory function.

Equation (3.2) can be easily solved via Laplace trans-
forms. The result is

- 1
C,,(k,2)=

_ (3.6)
—iz +¢(z)Dk?

C,e(k,0) ,
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where the tilde designates Laplace transforms. For the
simple exponential relaxation function in Eq. (3.3), the in-
verse transform of Eq. (3.6) can be performed analytically
[15]; but for more complicated ¢(z), finding an analytic
form for the inverse transform of Eq. (3.6) rapidly be-
comes unwieldy.

The inverse of Eq. (3.6) can be obtained numerically by
first converting qu(k,z) to the Fourier transform of
C,e(k,t). Since qu(k,t) is syr~nmetric, qu(k,a)) is real.
A standard result then relates C , (k,z) to C,, (k,w) [13]:

Cpolk,0)= 1%i‘+rr})2Re[(~,'qq(k,a)-+-i17)] . (3.7
Analytic expressions for C’qq(k,w) can be obtained for
most of the simpler forms of ¢(¢). The limit on the
right-hand side of Eq. (3.7) is usually straightforward,
and 77 can be set equal to zero without worrying about
any singularities in C'qq(k,z). Once C,,(k,w) is calculat-
ed, qu(k,t) can be found using standard Fourier tech-
niques. Equation (3.7) can also be used to calculate the
derivatives of C,,(k,?) with respect to any parameters in
the memory function ¢(¢). This is useful for curve-fitting
models for qu(k, t) to data generated from simulations.

The curve fits were performed by minimizing the objec-
tive function [16]

imax (C (k,t[)_c (k7t1!{a}))2
xifa)=3 —* 7

i=1 o;

) (3.8)

where the qu(k,t[) are the measured values of the corre-
lation functions at the times ¢;, and the C,,(k,t;;{a}) are
the corresponding values of the analytic form, which de-
pend on the parameters {a}. One of the parameters in
{a}] should always be Dy. The o; are the uncertainties
associated with the measured C,(k,?;). The uncertain-
ties o; are generally much harder to calculate than the
average values C,,(k,?;) and accurate values of o; would
require considerably more computational effort. For
curve fits, only the relative magnitudes of the o, are
needed, so following Ref. [3] the approximation

gi~1,
is used. The proportionality constant is not needed since
it does not change the location of the minimum. This
form accounts for the increasing uncertainty in the
qu(k,t,- ) at longer times.

For small enough values of k, the value of D4 obtained
from the curve fits will be independent of k, but at larger
values the thermal diffusivity may begin to exhibit some k
dependence. Because both C,(k,#) and the analytic
forms represented by Eq. (3.6) are rigorously even func-
tions of k, the small-k behavior must have the form

(3.9)

The Dr(k) calculated from the C,,(k,t) can be fit to Eq.
(3.9) and used to extrapolate Dy(k) to the kK —O0 limit.
This procedure is valid so long as k is small enough so
that higher-order terms in k do not contribute to the
behavior of D, (k).

D(k)=Djf +ak>+0(k*) .
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IV. RESULTS

The results of simulations on the Lennard-Jones fluid,
carbon dioxide, and water are reported. The simulations
were all performed at constant energy using the velocity
Verlet algorithm recast as a predictor corrector [11]. The
molecular systems were treated as rigid molecules, and
the internal constraints were maintained using a variant
of the SHAKE algorithm [17,18]. The standard truncated
potential

12 6

g g

d(r)=4e ;

+é

was used for the Lennard-Jones fluid, where € is the well
depth and o is the hard-sphere radius. The constant ¢ is
chosen so that the potential vanishes at the cutoff dis-
tance r,. The potentials for carbon dioxide and water
both consist of pairwise additive terms ¢,;(r;;) which are
formed from Lennard-Jones functions and Coulomb in-
teractions. The ¢;;(r;;) were truncated by adding terms
of the form

aij+b,~j(rij—rc) N

and choosing a;; and b;; so that both ¢;(r;) and its
derivative with respect to r;; vanished at the cutoff dis-
tance. For the Lennard-Jones fluid, the cutoff was set at
r,=2.50; fg)r carbon dioxide and water, the cutoff was set
atr,=9.5 A.

The qu(k,t) were calculated from constant energy
simulations. The energy was adjusted until the average
temperature matched the target temperature. For most
of the individual simulations, the average temperature
was within 2 K of the target temperature (the only excep-
tion was one of the 500-molecule simulations of carbon
dioxide). The time step for the water and carbon dioxide
simulations was 2.5 fs while for the Lennard-Jones fluid it
was 0.0047 in reduced time units, where t*=t/V mo?/e
for a particle of mass m [19].

Several separate simulations were run for each system.
Within each simulation, the individual C,,(k,?) were cal-
culated using multiple time origins separated by 0.01 ps
(0.0235 in reduced units for the Lennard-Jones fluid).
For each simulation, the C,(k,?) for all independent
wave vectors corresponding to a given set of indices were
calculated and the average taken to get a single correla-
tion function. For the indices (1,0,0) there are six
separate contributions, for (1,1,0) there are twelve contri-
butions, and for (1,1,1) there are eight. These individual
contributions to the C,, (k,?) were combined at the end of
each simulation to give an average qu(k,t) for the simu-
lation. For each fluid, simulations on two different size
systems were performed. These provided the TCAF’s for
a total of six different values of k for each fluid.

A. Lennard-Jones fluid

For comparison with other workers, simulations of the
Lennard-Jones fluid were performed at the state point
p*=0.8442, T*=0.722. The asterisk indicates the re-
duced units p* =po?® and T*=ky T /e. The thermal con-
ductivity has been calculated at this state point using
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both the Green-Kubo relation and NEMD techniques.
The present work included four simulations on a system
containing 1372 particles and four simulations on a sys-
tem containing 864 particles. Each simulation was 50 000
steps long. The values of Dr(k) were calculated using
the curve-fitting procedure described above. Fits of
C,q(k,?) were done using both the simple exponential de-
cay represented by Eq. (3.5) and the more complicated
memory function form of Eq. (3.6) using the memory ker-
nel given by Eq. (3.3). In all cases, the values of Dy ob-
tained from the two procedures agreed to within 1.5%.
The three C,,(k,?) from a single 1372-particle simulation
are plotted in Fig. 1, along with the fits to the memory
function form of the diffusion equation.

The curve fits match the data quite closely for all three
correlation functions. The correlation functions them-
selves are relatively simple. After an initial relaxation
period of t* ~0.1, they settle down to a simple monoton-
ic decay, consistent with the exponential form in Eq.
(2.18).

The calculated values of D are plotted as a function
of k* in Fig. 2. Also included in Fig. 2 is the fit to the
parabolic form represented by Eq. (3.9). Within the un-
certainty in the data, the points from different size simu-
lations appear to lie on the same curve. This indicates
that the C,,(k,?) do not depend significantly on the size
of the system used to calculate them. The parameters
from the  fit are  Dp*=1.461+0.07 and
a*=—0.2731£0.091. The uncertainties are obtained us-
ing standard regression analysis [20] and represent 95%
confidence intervals. Although the data in Fig. 2 are fair-
ly noisy, it suggests that there might be a change in the
behavior of D7 (k*) in the vicinity of k*~0.8. At higher
values of k*, the function D7(k*) appears to flatten out
slightly. As a check, a second fit to the parabola (3.9) was
done using only the points for k* <0.8. The parameters
change only slightly to Df*=1.52+0.15 and
a*=—0.40410.160. Within the uncertainties, the
differences in the two fits are insignificant.

1.0 T I T I T I T | T
08 F (1,0,0) -
S o6t -
08: 04 | / ((lvlso) B
0 b (LLD) Rl
i 1

0.0 L 1 L | L | L | L
0.0 0.4 0.8 12 16 2.0

FIG. 1. C,(k,t) for the Lennard-Jones fluid are plotted for
the (1,0,0), (1,1,0), and (1,1,1) wave vectors. Time is in reduced
units. The solid lines are calculated from a single simulation of
1372 particles; the dotted lines are the curve fits to the memory
function form (3.6) using the simple exponential memory kernel
(3.3).
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D' (k")

0.0 0.2 0.4 0.6 0.8 1.0 1.2
k

FIG. 2. Thermal diffusivity as a function of wave vector for
the Lennard-Jones fluid. Both thermal diffusivity and wave vec-
tor are in reduced units. The circles are calculated from the
1372-particle simulations; the squares are calculated from the
864-particle simulations. The solid line is a least-squares fit to
Eq. (3.9). The value of Dy *, along with its uncertainty, is given
by the diamond symbol near the left edge of the plot.

To compare the value of D with the thermal conduc-
tivity calculated by other authors, a series of eight simu-
lations were run on a 500-particle system using the
constant-pressure constant-temperature algorithm of An-
dersen and Nosé [21,22]. The simulations were run at the
reduced pressure pt =p, 0°/€=0.896 and the reduced
temperature 7*=0.722. Each simulation was 50000
steps long. The mean-square fluctuations in the enthalpy

H=E +pV

were calculated and the constant-pressure specific heat
was obtained from the relation [11]

RO

c —_— .
P NkgT?

The brackets { ), r indicate averages in the isothermal-

isobaric ensemble. The externally applied pressure is
used for the pressure p appearing in H and not the instan-
taneous pressure. The average density for these simula-
tions was 0.8438+0.0002, which is close to the density of
p*=0.8442 used in the constant-energy simulations. The
value of the constant-pressure specific heat from these
simulations was c, /kp =5.021+0.74. From Eq. (1.1), the
thermal conductivity corresponding to Dy *=1.46 is
k*=k(mo>/eky)=6.18+1.22. This is slightly lower
than the value of 6.78+0. 17 obtained by Paolini, Ciccot-
ti, and Massabrio using an NEMD calculation [7], but
the two values agree within the uncertainties. The value
of «* corresponding to DyF*=1.52 is k*=6.44%1.59.
The overall agreement of the plane wave and NEMD cal-
culations is fairly good, but the plane-wave method ap-
pears to have much higher uncertainties associated with
1t.

BRUCE J. PALMER 49

B. Carbon dioxide

The simulations of carbon dioxide were done using a
modified version [23] of the Murthy-Singer-McDonald
(MSM) potential [24]. A series of four simulations on a
500-molecule system and four simulations on a 256-
molecule system were performed. For both system sizes,
the individual simulations were 50.0 ps long. The tem-
perature was set at 290 K and the density was set at the
liquid saturation density of 0.798 g/cm®. Previous simu-
lations of this potential, using both Ewald sums and trun-
cations for the long-range forces, have shown that this
model accurately reproduces a large number of the exper-
imental properties of carbon dioxide [3,18,23,24].

The qu(k, t) from one of the 256-molecule simulations,
along with the curve fits to the exponential decay (3.5),
are shown in Fig. 3. Attempts to fit these curves to the
more general memory function form using the simple ex-
ponential memory kernel (3.3) were unsuccessful in about
half the cases. When fits using the memory function form
were obtained, the value of 7 in the kernel (3.3) was al-
ways less than 0.1 ps and in many cases was on the order
of ~0.01-0.02 ps. This is comparable to the sampling
frequency, so 7 is probably not well determined by the
data. However, in all cases where fits were obtained us-
ing both the memory function form and the simple ex-
ponential decay, the difference in the values of D, ob-
tained by the two methods was less than 0.2%.

The values of D are plotted as a function of k in Fig.
4. Although the scatter in the points is too great to make
a meaningful determination, there are no obvious indica-
tions that the D(k) from different size simulations lie on
different curves. The fit to the quadratic form (3.9) is also
shown. The parameters derived from the fit are
D =(4.25+0.88)X10"* cm?/s and a =(6.6+£10.1)
X 10™* cm? A%/s. The value of D is about 45% higher
than the experimental number of 2.92X10™* cm?/s
[25,26], although the uncertainties in D} are large. The
slow relaxation times, on the order of 4-7 ps for the
smaller values of k, may contribute to the noise. Because
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FIG. 3. C,(k,t) for the MSM model of carbon dioxide are
plotted for the (1,0,0), (1,1,0), and (1,1,1) wave vectors. The
solid lines are calculated from a single simulation of 256 mole-
cules; the dotted lines are the curve fits to the exponential decay
(3.5).
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FIG. 4. Thermal diffusivity as a function of wave vector for
the MSM model of carbon dioxide. The circles are calculated
from the 500-molecule simulations; the squares are calculated
from the 256-molecule simulations. The solid line is the least-
squares fit to Eq. (3.9). The value of Dy°, along with its uncer-
tainty, is given by the diamond symbol near the left edge of the
plot.

the relaxation times are so long, there are relatively few
uncorrelated intervals in each simulation, and the num-
ber of independent events contributing to each C,, (k,?) is
small.

The positive value for the coefficient a is unusual, given
that the value for a for both the Lennard-Jones fluid and
water is negative. The uncertainty in a is large enough so
that a small negative value for a is a reasonable possibili-
ty. Even for the value of a obtained in the fit, the data
suggests that the values of Dy are only weakly dependent
on k for k <0.4 A™!. A straight average of the data
gives a value of D;=(4.77%0.40) X 10™* cm?/s, which is
not significantly different from the value obtained by
fitting D (k) to the parabola (3.9).

C. TIP4P water

The simulations on water were done using the TIP4P
model of Jorgensen et al. [27]. As with carbon dioxide, a
series of four simulations on a 500-molecule system and
four simulations on a 256-molecule system were per-
formed. Each simulation was 50.0 ps long. The tempera-
ture was set at 298 K and the density was set at the one-
atmosphere density of 0.997 g/cm®.

The results for water are somewhat curious. The
qu(k,t) from one of the 500-molecule simulations are
shown in Fig. 5, along with the curve fits to the memory
function form (3.6) using the oscillatory memory kernel
(3.4). Attempts to use the simple exponential decay (3.5)
for the memory kernel were consistently unsuccessful.
The simulation curves all appear to show a weak oscilla-
tion on top of the slow decay of the correlation function,
or at least a break in the decay in the neighborhood of 0.5
ps. The overall quality of the curve fits is quite poor; the
memory function seems to oscillate more than the data at
short times and less at longer times [the second break in
the (1,0,0) curve near 2 ps is consistently reproducible
from one simulation to the next]. There is also a notice-
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FIG. 5. C(k,t) for the TIP4P model of water are plotted for
the (1,0,0), (1,1,0), and (1,1,1) wave vectors. The solid lines are
calculated from a single simulation of 500 molecules; the dotted
lines are the curve fits to the memory function form (3.6) using
the oscillating memory kernel (3.4).

able difference in the values of D (k) obtained using the
memory function form compared to the simple exponen-
tial decay. The values of D, (k) obtained from fitting the
exponential are 5—-10 % higher than the corresponding
values obtained using the memory function form.

The Dy obtained using the memory function form for
C,,(k,1) are plotted as a function of k in Fig. 6, along
with the fit to the parabolic form (3.9). Again, the Dy(k)
for the different system sizes appear to lie on the same
curve The parameters derived from the curve fit are

=(1. 51+0 18)X 1072 cm’/s and a =(—3.1440.95)
XlO 3 cm? A%/s. Like the Lennard-Jones results, the
data in Fig. 6 appear to flatten out slightly at larger
values of k. Fitting only the points for k < O 44~ ! gives
the parameters D =(1.91+0.50)X107% cm?/s and
a=(—7.03+4.88)X 107> cm?® A%s. The difference in
Dy’ from the two fits falls within the uncertainties. How-
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FIG. 6. Thermal diffusivity as a function of wave vector for
the TIP4P model of water. The circles are calculated from the
500-molecule simulations; the squares are calculated from the
256-molecule simulations. The solid line is the least-squares fit
to Eq. (3.9). The value of Dy, along with its uncertainty, is
given by the diamond symbol near the left edge of the plot.



2056 BRUCE J. PALMER 49

ever, the difference does lie near the edge of the uncer-
tainty and suggests that there may be a crossover in the
behavior of Dy(k) near k ~0.4 A~'. The experimental
value for the thermal diffusivity of water is 1.46X10°
cm?/s [28]. This compares very well with the fit to the
full data set, but is significantly lower than the number
obtained when only the points for k <0.4 A~ are used.
The overall conclusion is that the thermal diffusivity for
the TIP4P model of water is probably slightly higher
than the experimental number for water.

If the D, (k) calculated by fitting the qu(k,t) to the
simple exponential decay (3.5) are fit to the parabola (3.9),
the results parallel those obtained for the data shown in
Fig. 6. A fit to all the data points gives the parameters
D#=(1.63+0.18)X10~3 cm?/s and a =(—3.40+0.96)
X107* cm? A%/s, while the fit to only the points for
k <0.4 A~ gives D =(2.06+0.48)X 10" cm?/s and
a=(—7.69+4.66)x10"2 cm? A%/s. It is encouraging
that the numbers are so close for both sets of curve fits,
even for a case where neither model for qu(k,l) is partic-
ularly good.

The slight oscillatory behavior in the C,,(k,?) is prob-
ably not due to any microscopic relaxation processes. It
more likely results from the second term in Eq. (2.16),
which can contribute to the behavior of C,, (k,?) for finite
values of k. The values of Q in the memory kernel (3.4)
are plotted as a function of k in Fig. 7. The plot suggests
that Q(k) vanishes as k—0. If ) were determined by
some intrinsic microscopic process, then () should de-
pend only weakly on k, and have a finite value at k =0.
On the other hand, if the oscillation is due to the second
term in (2.16), the Q would be expected to depend on X in
the manner suggested by Fig. 7. The frequency of pres-
sure oscillations vanishes linearly as the wavelength of
the oscillation goes to infinity, which resembles the
behavior in Fig. 7. The behavior of (), combined with the
nonexponential form of the C,, (k,?), suggests that water
is still fairly far from the small-k limit for the 500-
molecule system. Because of the connection between
qu (k, 1) and the Green-Kubo formula for «, there may be
a noticeable size dependence for Green-Kubo values of
calculated from simulations in this size range.
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FIG. 7. The value of ) in the memory kernel (3.4) as a func-
tion of wave vector for the TIP4P model of water. The circles
are calculated from the 500-molecule simulations; the squares
are calculated from the 256-molecule simulations.

V. CONCLUSIONS

The calculation of the thermal diffusivity from fluctua-
tions in the heat energy density g (r,?) represents a viable
method of estimating the thermal diffusivity from equilib-
rium molecular-dynamics simulations. Whether the
method can be used to obtain high accuracy results
remains to be seen. For the Lennard-Jones fluid, the
thermal diffusivity calculated from fluctuations in g (r,?)
is in agreement with the thermal conductivity calculated
using NEMD techniques. The fluctuation method is easy
to implement and does not add significantly to the cost of
the simulation. The statistics for this method appear to
be poorer than for the Green-Kubo and NEMD methods,
and the analysis of the qu(k,t) is more complicated than
integrating the Green-Kubo integrand.

The determination of where the small-k region begins
remains the most subjective aspect of calculating the Dy
from the qu(k,t). For large values of k, the behavior of
C,(k,7) may deviate from the simple exponential
form-—not only because of nonhydrodynamic behavior at
short wavelengths, but also because of hydrodynamic cou-
pling between the heat energy density ¢(r,t) and the
pressure field p (r,?) at finite k. The hydrodynamic cou-
plings could, in principle, be incorporated into the calcu-
lation by simultaneously solving the linearized hydro-
dynamic equations for ¢ (r,t),p(r,t), and the longitudinal
component of the velocity field [15].

Unlike the Green-Kubo integral and NEMD simula-
tions, the qu(k,t) lead directly to the thermal diffusivity
instead of the thermal conductivity. These two transport
coefficients can be related via Eq. (1.1), but this requires
the calculation of the constant-pressure specific heat.
The calculations of c, for the Lennard-Jones fluid indi-
cate that determining the constant-pressure specific heat
to high accuracy is likely to be a computationally inten-
sive task. If the thermal diffusivity is the desired quanti-
ty, the direct approach using the C,(k,?) is probably
more efficient than the indirect calculation using Eq.
(1.1).

Several authors have noted that the Green-Kubo in-
tegrand for the thermal conductivity decays rapidly in
zero and does not exhibit the long-time tail seen in the
Green-Kubo integrand used to calculate the shear viscos-
ity [1,10]. For the Lennard-Jones fluid and carbon diox-
ide, the C,,(k,?) rapidly reach behavior that is compati-
ble with the exponential decay predicted by the hydro-
dynamic theory for small values of k. Even for water, the
qu(k,t) show only small deviations from the expected
behavior.

For the shear viscosity, the correlation function analo-
gous to C,,(k,?) is the transverse current autocorrelation
function. Like the qu( k,t), the TCAF’s decay exponen-
tially in the small-k, long-time limit. However, the
TCAF’s for the Lennard-Jones fluid and water are
significantly different from an exponential decay in the
range of system sizes investigated here. The large-k
TCAF’s for the Lennard-Jones fluid (k*>0.8) and all
the TCAF’s for water exhibit damped oscillatory
behavior. The slower approach to hydrodynamic
behavior for the TCAF’s may be related to the existence
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of the long-time tail in the Green-kubo integrand.
Finally, it is worth noting that the values of D ob-
tained from the simulations of carbon dioxide and water
are within at least a factor of 2 of the experimental
values, and are more likely within 50% of experiment.
This agreement suggests that it should be possible to ob-
tain qualitative information about thermal diffusion in
molecular liquids from classical simulations. Whether it
is possible to obtain quantitative agreement for molecular
liquids is a more complicated question. As Eq. (1.1) indi-
cates, the thermal conductivity and the thermal
diffusivity are related by a factor of the constant-pressure
specific heat. For molecular liquids, the constant-volume
specific heat ¢, is known to have substantial quantum
corrections [29], and this would be expected of c, as well

2057

(c,~c, for most molecular liquids). Thus, either the
thermal conductivity or the thermal diffusivity is likely to
have a large quantum correction, which would limit the
absolute accuracy that can be achieved with a classical
model.
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